A New Robust Digital Image Watermarking Algorithm Based on LWT-SVD and Fractal Images
نویسندگان
چکیده
This paper presents a robust copyright protection scheme based on Lifting Wavelet Transform (LWT) and Singular Value Decomposition (SVD). We have used fractal decoding to make a very compact representation of watermark image. The fractal code is presented by a binary image. In the embedding phase of watermarking scheme, at first, we perform decomposing of the host image with 2D-LWT transform, then SVD is applied to sub-bands of the transformed image, and then the watermark, “binary image,” is embedded by modifying the singular values. In the watermark extraction phase, after the reverse steps are applied, the embedded binary image and consequently the fractal code are extracted from the watermarked image. The original watermark image is rendered by running the code. To verify the validity of the proposed watermarking scheme, several experiments are carried out and the results are compared with the results of the other algorithms. In order to evaluate the quality of image, we use parameter peak value signal-to-noise ratio (PSNR). To measure the robustness of the proposed algorithm, the NC coefficient is evaluated. The experimental results indicate that, in addition to high transparency, the proposed scheme is strong enough to resist various signal processing operations, such as average filter, median filter, Jpeg compression, contrast adjustment, cropping, histogram equalization, rotation, etc.
منابع مشابه
Lifting Wavelet Transform with Singular Value Decomposition for Robust Digital Image Watermarking
Digital image watermarking is proposed using lifting wavelet transform and singular value decomposition for copyright protection and authentication. In this paper, lifting wavelet transform (LWT) transforms the image into subbands. The subband having energy greater than computed ‘Q’ value is selected for watermark embedding. Singular value decomposition (SVD) matrix is derived for this subband ...
متن کاملBlind Medical Image Watermarking with LWT – SVD for Telemedicine Applications
This paper highlights the extension of dwt-svd based image watermarking to medical images. In recent times internet has become a primary source of communication between the diagnostics center and the remote doctor located at some hospital. With the use of internet come the problem of data authenticity and the responsibility of the medical practitioner to preserve sensitive information of patien...
متن کاملنشانهگذاری نیمهکور تصاویر با استفاده از SVD در حوزه تبدیل موجک گسسته
With development of digital multimedia technology and rapid growth of the Internet, illegal copy and exchange of digital multimedia sources is also spread. In such environment, copyright protection plays an essential role. In this paper a new semi- blind image watermarking algorithm for proof of ownership is proposed. At first, the original image is transformed to transform domain and the low f...
متن کاملResearch on Color Watermarking Algorithm Based on RDWT-SVD
In this paper, a color image watermarking algorithm based on Redundant Discrete Wavelet Transform (RDWT) and Singular Value Decomposition (SVD) is proposed. The new algorithm selects blue component of a color image to carry the watermark information since the Human Visual System (HVS) is least sensitive to it. To increase the robustness especially towards affine attacks, RDWT is adopted for its...
متن کاملComparative Performance Analysis of Secured LWT-SVD Based Color Image Watermarking Technique in YUV, YIQ and YCbCr Color Spaces
In this paper the perceptual quality and robustness in LWT domain and DWT domain is evaluated for the gray-scale image. The proposed technique is based on Lifting Wavelet Transform and Discrete Wavelet Transform (LWT-SVD) domain for embedding the gray-scale image to the color host image. Fibonacci-Lucas Transform is used to scramble the watermark image for security reason. YUV, YIQ and YCbCr co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015